Abstract

The paper is devoted to an investigation of the genus of an orientable closed surface $M^{2}$ which admits $A$-endomorphisms whose nonwandering set contains a one-dimensional strictly invariant contracting repeller $\Lambda_{r}$ with a uniquely defined unstable bundle and with an admissible boundary of finite type. First, we prove that, if $M^{2}$ is a torus or a sphere, then $M^{2}$ admits such an endomorphism. We also show that, if $\Omega$ is a basic set with a uniquely defined unstable bundle of the endomorphism $f\colon M^{2}\to M^{2}$ of a closed orientable surface $M^{2}$ and $f$ is not a diffeomorphism, then $\Omega$ cannot be a Cantor type expanding attractor. At last, we prove that, if $f\colon M^{2}\to M^{2}$ is an $A$-endomorphism whose nonwandering set consists of a finite number of isolated periodic sink orbits and a one-dimensional strictly invariant contracting repeller of Cantor type $\Omega_{r}$ with a uniquely defined unstable bundle and such that the lamination consisting of stable manifolds of $\Omega_{r}$ is regular, then $M^{2}$ is a two-dimensional torus $\mathbb{T}^{2}$ or a two-dimensional sphere $\mathbb{S}^{2}$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call