Abstract

The first problem which arises when studying a topological classification of A-homeomorphisms with nontrivial basic sets is the problem to find a suitable topological invariant which can adequately reflect the restriction of the diffeomorphism to the basic set as well as the embedding of the basic sets to the ambient manifold. Let \(f,~f'\) be orientation preserving A-diffeomorphisms of orientable compact manifolds \(M^n,~{M}^{\prime n}\) (possibly with boundary) respectively and let \(f,~f'\) have nontrivial basic sets \(\varLambda ,~\varLambda '\) respectively which are in the interior of the manifold. The problem is to find necessary and sufficient conditions of existence of a homeomorphism \(h:M^n\rightarrow M^{\prime n}\) such that \(hf|_{\varLambda }=f'h|_{\varLambda }\). We show that the problem of topological conjugacy for arbitrary 2-dimensional and 1-dimensional basic sets as well as 0-dimensional basic sets without pairs of conjugated points can be reduced to the analogues problem for widely situated basic sets on an orientable surface with boundary (possibly empty) which is called a canonical support of the basic set. The study of the latter is essentially based on the investigation of the asymptotic properties of the stable and unstable manifolds of the points of the basic sets on the universal cover. The suggested method solves the problem of realization of arbitrary 1-dimensional basic sets as well as 0-dimensional basic sets without pair of conjugated points by constructing a so called hyperbolic diffeomorphism on the support of the basic set such that it has an invariant locally maximal set on the intersection of two geodesic laminations. We show that the restriction of the diffeomorphism f to the basic set is a factor of the restriction of the hyperbolic diffeomorphism to the intersection of the respective laminations. If the basic set is widely situated on the torus then for it a hyperbolic automorphism of the torus (Anosov diffeomorphism) is uniquely defined and it is a factor of the initial diffeomorphism. If the diffeomorphism f is structurally stable then the support of the basic set can be constructed in such a way that the restriction of the initial diffeomorphism to it consists of exactly one nontrivial basic set and of finitely many hyperbolic periodic points belonging to the boundary of the support. This and the results on the classification of the Morse-Smale diffeomorphisms enable us to construct a complete topological invariant for important classes of structurally stable diffeomorphisms on surfaces whose non-wandering sets contain a nontrivial 1-dimensional basic set (attractor or repeller). Such a class was studied for instance in [8]. The presentation of the results in this chapter follows the papers [2, 6, 7, 8, 9, 10, 11, 12, 16, 17] and it is in many concepts related to the papers [1, 4, 5, 14, 15].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call