Abstract

Cells from all kingdoms of life produce extracellular vesicles (EVs). Their cargo is protected from the environment by the surrounding lipid bilayer. EVs from many organisms have been shown to function in cell–cell communication, relaying signals that impact metazoan development, microbial quorum sensing, and pathogenic host–microbe interactions. Here, we have investigated the production and functional activities of EVs in a surface-associated microbial community or biofilm of the fungal pathogen Candida albicans. Crowded communities like biofilms are a context in which EVs are likely to function. Biofilms are noteworthy because they are encased in an extracellular polymeric matrix and because biofilm cells exhibit extreme tolerance to antimicrobial compounds. We found that biofilm EVs are distinct from those produced by free-living planktonic cells and display strong parallels in composition to biofilm matrix material. The functions of biofilm EVs were delineated with a panel of mutants defective in orthologs of endosomal sorting complexes required for transport (ESCRT) subunits, which are required for normal EV production in diverse eukaryotes. Most ESCRT-defective mutations caused reduced biofilm EV production, reduced matrix polysaccharide levels, and greatly increased sensitivity to the antifungal drug fluconazole. Matrix accumulation and drug hypersensitivity of ESCRT mutants were reversed by addition of wild-type (WT) biofilm EVs. Vesicle complementation showed that biofilm EV function derives from specific cargo proteins. Our studies indicate that C. albicans biofilm EVs have a pivotal role in matrix production and biofilm drug resistance. Biofilm matrix synthesis is a community enterprise; prior studies of mixed cell biofilms have demonstrated extracellular complementation. Therefore, EVs function not only in cell–cell communication but also in the sharing of microbial community resources.

Highlights

  • Vesicles are released externally by cells of bacteria, archaea, and eukaryotes [1,2,3]

  • The present study identifies extracellular vesicles (EVs) that are distinct to biofilms

  • Our findings reported here show that EVs promote assembly of the mannan– glucan complex that leads to drug resistance

Read more

Summary

Author summary

Candida albicans—the most common fungal pathogen in humans—often grows as a biofilm, resulting in an infection that is difficult to treat. These adherent communities tolerate extraordinarily high concentrations of antifungals due in large part to the protective extracellular matrix. The present study identifies extracellular vesicles (EVs) that are distinct to biofilms. These EVs deliver the functional extracellular matrix and are essential for resistance to antifungals. Our findings reveal a coordinated mechanism by which the defining trait of the biofilm lifestyle arises and identify a number of potential therapeutic targets

Introduction
Findings
Ethics statement

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.