Abstract
We consider the problem of representing the visibility graph of line segments as a union of cliques and bipartite cliques. Given a graphG, a familyG={G 1,G 2,...,G k } is called aclique cover ofG if (i) eachG i is a clique or a bipartite clique, and (ii) the union ofG i isG. The size of the clique coverG is defined as ∑ ki=1 n i , wheren i is the number of vertices inG i . Our main result is that there are visibility graphs ofn nonintersecting line segments in the plane whose smallest clique cover has size Ω(n 2/log2 n). An upper bound ofO(n 2/logn) on the clique cover follows from a well-known result in extremal graph theory. On the other hand, we show that the visibility graph of a simple polygon always admits a clique cover of sizeO(nlog3 n), and that there are simple polygons whose visibility graphs require a clique cover of size Ω(n logn).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have