Abstract

Conical intersection (CI) leads to fast electronic energy transfer. However, Hamm and Stock [Phys. Rev. Lett. 109, 173201 (2012)] showed the existence of a vibrational CI and its role in vibrational energy relaxation. In this paper, we further investigate the vibrational energy relaxation using an isolated model Hamiltonian system of four vibrational modes with two distinctively different timescales (two fast modes and two slow modes). We show that the excitation of the slow modes plays a crucial role in the energy relaxation mechanism. We also analyze the system from a mixed quantum-classical (surface hopping method) and a completely classical point of view. Notably, surface hopping and even classical simulations also capture fast energy relaxation, which is a signature of CI's existence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call