Abstract

General theoretical expressions for the dephasing and energy relaxation times of a stiff oscillator in simple fluids are derived from the GLE and a critical discussion of the dynamic processes in these systems is given. In addition new methodological aspects of stochastic and full molecular dynamics simulations are discussed. The new reversible integrator based on the Trotter factorization of the classical propagator is used to directly simulate the vibrational energy and phase relaxation of a stiff classical oscillator dissolved in a Lennard-Jones bath. We compare the ‘‘real’’ relaxation from full MD simulations with that predicted by Kubo theory and by the generalized Langevin equation (GLE) with memory friction determined from the full molecular dynamics. It is found that the GLE gives very good agreement with MD for the vibrational energy relaxation, even for nonlinear oscillators far from equilibrium. The dephasing relaxation is also well approximated by the GLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.