Abstract

Although bacterial resistance is a worldwide growing concern, the development of bacteriostatic and bactericidal drugs has been decreasing in the last decade. Compounds that modulate the microorganism virulence, without killing it, have been considered promising alternatives to combat bacterial infections. However, most signaling pathways that regulate virulence are complex and not completely understood. The rich chemical diversity of natural products offers a good starting point to identify key compounds that shed some light on this matter. Therefore, we investigated the role of Marcetia latifolia ethanolic extract, as well as its major constituent, calycopterin (5,4'-dihydroxy-3,6,7,8-tetramethoxylflavone), in the regulation of virulence-related phenotypes of Pseudomonas aeruginosa. Our results show that calycopterin inhibits pyocyanin production (EC50 = 32 μM), reduces motility and increases biofilm formation in a dose-dependent manner. Such biological profile suggests that calycopterin modulates targets that may act upstream the quorum sensing regulators and points to its utility as a chemical probe to further investigate P. aeruginosa transition from planktonic to sessile lifestyle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.