Abstract

Although 90% of BRD relapses are reported to receive retreatment with a different class of antimicrobial, studies examining the impact of antimicrobial selection (i.e. bactericidal or bacteriostatic) on retreatment outcomes and the emergence of antimicrobial resistance (AMR) are deficient in the published literature. This survey was conducted to determine the association between antimicrobial class selection for treatment and retreatment of BRD relapses on antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Pathogens were isolated from samples submitted to the Iowa State University Veterinary Diagnostic Laboratory from January 2013 to December 2015. A total of 781 isolates with corresponding animal case histories, including treatment protocols, were included in the analysis. Original susceptibility testing of these isolates for ceftiofur, danofloxacin, enrofloxacin, florfenicol, oxytetracycline, spectinomycin, tilmicosin, and tulathromycin was performed using Clinical and Laboratory Standards Institute guidelines. Data were analyzed using a Bayesian approach to evaluate whether retreatment with antimicrobials of different mechanistic classes (bactericidal or bacteriostatic) increased the probability of resistant BRD pathogen isolation in calves. The posterior distribution we calculated suggests that an increased number of treatments is associated with a greater probability of isolates resistant to at least one antimicrobial. Furthermore, the frequency of resistant BRD bacterial isolates was greater with retreatment using antimicrobials of different mechanistic classes than retreatment with the same class. Specifically, treatment protocols using a bacteriostatic drug first followed by retreatment with a bactericidal drug were associated with a higher frequency of resistant BRD pathogen isolation. In particular, first treatment with tulathromycin (bacteriostatic) followed by ceftiofur (bactericidal) was associated with the highest probability of resistant M. haemolytica among all antimicrobial combinations. These observations suggest that consideration should be given to antimicrobial pharmacodynamics when selecting drugs for retreatment of BRD. However, prospective studies are needed to determine the clinical relevance to antimicrobial stewardship programs in livestock production systems.

Highlights

  • Bovine respiratory disease (BRD) is one of the most important diseases facing the beef cattle industry [1]

  • In North America, BRD in feedlot cattle is associated with substantial economic losses due to the cost of treatment and deleterious effects on animal health and production [1,2,3,4,5]

  • BRD has a complex, multifactorial etiology, M. haemolytica, P. multocida, and H. somni are most often associated with clinical disease [16]

Read more

Summary

Introduction

Bovine respiratory disease (BRD) is one of the most important diseases facing the beef cattle industry [1]. Treatment and control of BRD are currently predicated on administration of antimicrobial therapy directed toward the primary bacterial pathogens Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. The National Animal Health Monitoring System Feedlot 2011 study reported that 21.2 ± 2.0% (mean ± standard error, SE) of cattle in feedlots were administered antimicrobials to control an expected outbreak of BRD, and approximately 15% of feedlot cattle required a second antimicrobial treatment for the disease [3,4,5]. Approximately 90% of cases with BRD relapse were reported to receive retreatment with a different antimicrobial mechanistic class [5], studies examining the impact of antimicrobial drug class on retreatment outcomes and the emergence of antimicrobial resistance (AMR) are scarce in the published literature. Knowledge of the impact of antimicrobial drug selection on AMR emergence is needed to develop judicious use guidelines that preserve antimicrobial efficacy and advance antimicrobial stewardship

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call