Abstract

Given the ability of Staphylococcus aureus to form biofilms and produce persister cells, making infections difficult to treat with antibiotics alone, there is a pressing need for an effective antibiotic adjuvant to address this public health threat. In this study, a series of quinone derivatives were evaluated for their antimicrobial and antibiofilm activities against methicillin-susceptible and methicillin-resistant S. aureus reference strains. Following analyses using broth microdilution, growth curve analysis, checkerboard assay, time-kill experiments, and confocal laser scanning microscopy, menadione was identified as a hit compound. Menadione exhibited a notable antibacterial profile (minimum inhibitory concentration, MIC = 4–16 μg/ml; minimum bactericidal concentration, MBC = 256 μg/ml) against planktonic S. aureus and its biofilms (minimum biofilm inhibitory concentration, MBIC50 = 0.0625–0.25 μg/ml). When combined with oxacillin, erythromycin, and vancomycin, menadione exhibited a synergistic or additive effect against planktonic cells and biofilms of two S. aureus reference strains and six clinical isolates, highlighting its potential as a suitable adjuvant for further development against S. aureus biofilm-associated infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.