Abstract
The tissue-specific expression pattern and the intracellular distribution of the Ca(2+)-binding protein calreticulin at the mRNA and protein levels have been studied during somatic and zygotic embryogenesis of Nicotiana plumbaginifolia Viv. A full-length cDNA sequence encoding calreticulin was isolated from a lembda Zap cDNA library from early developmental stages of somatic embryogenesis. The deduced amino acid sequence of the calreticulin from N. plumbaginifolia shows high homology to the corresponding proteins of tobacco (98.2% identity), maize (80%) and barley (76.5%), and more than 55% homology to animal calreticulins, and the sequence motifs with established functions found in calreticulins of other species were quite conserved. Northern experiments revealed a developmental regulation of the calreticulin transcript with a maximum during the early stages of somatic embryogenesis and an auxin dependence during in-vitro cell culture. alpha-Naphthaleneacetic acid stimulated calreticulin expression whereas 2,4-dichlorophenoxyacetic acid reduced it. Immunohistological analysis of calreticulin distribution in the ovaries during zygotic embryogenesis showed that calreticulin biosynthesis started tissue specifically, with a high abundance in the endothelium of the integument in the ovules, followed by calreticulin accumulation in the embryo proper and in the associated endosperm at the late globular stage of embryogenesis. Using immunogold labeling, calreticulin was intracellularly localized with a high abundance to the Golgi compartment and to patches on the surface of dividing protoplasts. Smaller amounts were found in the endoplasmic reticulum and plasma membranes. The functional role of calreticulin in posttranslational processing and translocation processes, apart from its postulated function in cellular Ca2+ homeostasis, is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have