Abstract

A study of the d-dimensional classical Heisenberg ferromagnetic model in the presence of a magnetic field is performed within the two-time Green function’s framework in classical statistical physics. We extend the well known quantum Callen method to derive analytically a new formula for magnetization. Although this formula is valid for any dimensionality, we focus on one- and three- dimensional models and compare the predictions with those arising from a different expression suggested many years ago in the context of the classical spectral density method. Both frameworks give results in good agreement with the exact numerical transfer-matrix data for the one-dimensional case and with the exact high-temperature-series results for the three-dimensional one. In particular, for the ferromagnetic chain, the zero-field susceptibility results are found to be consistent with the exact analytical ones obtained by M.E. Fisher. However, the formula derived in the present paper provides more accurate predictions in a wide range of temperatures of experimental and numerical interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call