Abstract
Gaseous fuels, such as liquefied petroleum gas (LPG) and natural gas (NG), thanks to their good mixing capabilities, allow complete and cleaner combustion than gasoline in spark ignition (SI) engines, resulting in lower pollutant emissions and particulate matter. In a previous work the authors showed that the simultaneous combustion of gasoline and LPG improves an SI engine efficiency with respect to pure gasoline operation with any significant power loss. The addition of LPG to the gasoline-air mixture produces an increase in knock resistance that allows running the engine at full load with overall stoichiometric mixture and better spark advance. In order to predict both performance and efficiency of engines fed by LPG-gasoline mixtures, a specific combustion model and in particular a knock prediction sub-model is required. Due to the lack of literature works about this matter, the authors investigated the knock resistance of LPG-gasoline mixtures. As a result, a reliable knock prediction sub-model has been obtained. The model can be easily implemented in thermodynamic simulations for a knock-safe engine performance optimization. The authors recorded light knocking in-cylinder pressure cycles on a cooperative fuel research (CFR) engine fueled by LPG-gasoline mixtures in different proportions. The tests were performed varying the compression ratio, the spark advance, and the inlet mixture temperature. The collected data have been used to calibrate and then compare two classical knock-prediction models. The models have been calibrated with a heterogeneous set of experimental data in order to predict knock occurrence in SI engines of different kinds. The results show that the models predict the knock onset position with a maximum error of around 6 crank angle degrees (CAD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.