Abstract

AbstractSimple expressions are derived for the development of monomer conversion, as well as propagating radical, adduct radical, dormant chain, and dead chain concentrations in reverse addition‐fragmentation transfer polymerization (RAFT). The relations for the profiles of propagating radical concentration and conversion versus time are derived and depend on group parameters of rate constants and chemical recipe. The analytical equations are verified against numerical solutions of the mass‐balance differential equations. This derivation involves the steady‐state hypothesis for radical and RAFT agent concentrations. The errors introduced by these assumptions are negligible when the fragmentation rate constant, kf, is higher than 10 s−1 or when the cross‐termination rate constant, kct, is higher than 105 L · mol−1 s−1.Calculated concentration profiles (points: numerical, lines: analytical) of propagating radical R, adduct radical A, dormant T, and dead D (= P + P′) chains.imageCalculated concentration profiles (points: numerical, lines: analytical) of propagating radical R, adduct radical A, dormant T, and dead D (= P + P′) chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.