Abstract
AbstractThe entanglement length plays a key role in deciding many important properties of thermoplastics. A number of computational techniques exist for the determination of entanglement length. In Ahmad et al.,[1] a method is proposed that treats a macromolecular chain as a 1D open curve and identifies entanglements by computing the linking number between two such interacting curves. If the curves wind around each other, a topological entanglement is detected. However, the entanglement length that is measured in experiments is assumed to be between rheological entanglements, which are clusters of such topological entanglements that collectively anchor the interacting chains strongly. In this article, the method of clustering topological entanglements into rheological ones is further elaborated and the robustness of the method is assessed. It is shown that this method estimates an entanglement length that depends on the forcefield chosen and is reasonably constant for chain lengths longer than the entanglement length. For shorter chain lengths, the method returns an infinite value of entanglement length indicating that the sample is unentangled. Moreover, in spite of using a geometry‐based algorithm for clustering topological entanglements, the estimated entanglement length retains known empirical connections with physical attributes associated with the ensemble.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.