Abstract
In order to meet the requirement of microchannel plate position-sensitive photon counting detector in the extreme ultraviolet region, the quantum efficiency of alkali halide photocathode was studied. Based on the fact that the photoemission from photocathode is formed by secondary electrons, the theoretical model of secondary electron emission for alkali halide photocathode was presented, and the formula of secondary electron yield was obtained. For photon energy ranging from 30 to 250 eV, the effect of the thickness of photocathode and the incidence angle on the secondary electron yield was calculated and analyzed,the result showed that when the thickness was higher than 100 nm and the grazing angle was larger than the critical angle of photocathode material, high secondary electron yield was obtained. Finally, according to the derived formula, the spectrum response of the secondary electron yield for twenty alkali halides was analyzed, and the result showed that the position of the peak yield was in accordance with the resonant absorption of photocathode materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have