Abstract
Estimation of the monthly average solar radiation on surfaces of arbitrary orientation is necessary for many solar performance prediction programs and is useful for other applications. For passive solar applications, especially, overhangs are often used to seasonally modulate the amount of radiation striking the surface. Liu and Jordan[1] have developed a method for estimation of monthly average radiation on unshaded tilted surfaces based on horizontal surface data. This method has been extended to unshaded surfaces of arbitrary tilt and azimuth by Klein[2]. Utzinger and Klein[3] have presented a graphical method for estimating monthly average radiation on shaded vertical surfaces, while Jones [4]has offered an analytical method for the same configuration. This paper presents an analytical solution to the calculation of monthly average insolation on shaded surfaces at any tilt and azimuth. Results are comparable among the three methods when shaded vertical surfaces are analyzed. This analytical method offers an alternative to slower and less accurate numerical integration and to less general regression of numerical integration results for use in solar performance prediction programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.