Abstract

In this study, we estimated solar radiation by multiple regression analysis using sunshine duration and precipitation data, which are highly correlated to solar radiation. We found the regression equation using data obtained from GROM (Gangwon Regional Office of Metrology, station 105, 1980-2007) located in Gangneung, South Korea and validated the equation by applying data obtained from new GROM (newly relocated, station 104, 2009-2014) and data obtained from GWNU (Gangneung-Wonju National University, 2013-2014) located between stations 104 and 105. By using sunshine duration data alone, the estimation using data from station 104 resulted in a correlation coefficient of 0.96 and a standard error of , which was similar to the previous results; the estimation using data from GWNU yielded better results with a correlation coefficient of 0.99 and a standard error of . By using sunshine duration and precipitation data, the estimation (using data from station 104) yielded a correlation coefficient of 0.96 and a standard error of , resulting in a lower standard error compared to what was obtained using sunshine duration data alone. The maximum solar radiation bias increased from -26.6% (March 2013) to -31.0% (February 2011) when both sunshine duration and precipitation data were incorporated into the estimation rather than when sunshine duration data alone was incorporated. This was attributed to the concentrated precipitation found during May and July-September, which resulted in negative coefficients of the estimating equation in other months. Therefore, the monthly average solar radiation should be estimated carefully when employing the monthly average precipitation for those places where precipitation is concentrated during summer, such as the Korean peninsula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.