Abstract

Electrical motor cortex stimulation (EMCS) has been used for Parkinson's Disease (PD) treatment. Some studies found that distinct cell types might lead to selective effects. As the largest subgroup of interneurons, Parvalbumin (PV) neurons have been reported to be involved in the mechanisms of therapeutic efficacy for PD treatment. However, little is known about their responses to the EMCS. In this study, we used in-vivo two-photon imaging to record calcium activities of PV neurons (specific type) and all neurons (non-specific type) in layer 2/3 primary motor cortex (MI) during EMCS with various stimulus parameters. We found PV neurons displayed different profiles of activation property compared to all neurons. The cathodal polarity preference of PV neurons decreased at a high-frequency stimulus. The calcium transients of PV neurons generated by EMCS trended to be with large amplitude and short active duration. The optimal activation frequency of PV neurons is higher than that of all neurons. These results improved our understanding of the selective effects of EMCS on specific cell types, which could bring more effective stimulation protocols for PD treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call