Abstract

By forming a highly stable Al2O3 gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400 °C (673 K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (VB) of the MOSFET without a field plate is 600 V at a gate-drain distance (LGD) of 7 μm. We fabricated some MOSFETs for which VB/LGD > 100 V/μm. These values are comparable to those of lateral SiC or GaN FETs. The Al2O3 was deposited on the C-H surface by atomic layer deposition (ALD) at 450 °C using H2O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400 °C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400 °C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call