Abstract

We first report a detailed transmission electron microscopy study of dislocation networks (DNs) formed at shallowly buried interfaces obtained by bonding two GaAs crystals between which we establish in a controlled manner a twist and a tilt around a k110l direction. For large enough twists, the DN consists of a twodimensional network of screw dislocations accommodating mainly the twist and of a one-dimensional network of mixed dislocations accommodating mainly the tilt. We show that in addition the mixed dislocations accommodate part of the twist and we observe and explain slight unexpected disorientations of the screw dislocations with respect to the k110l directions. By performing a quantitative analysis of the whole DN, we propose a coherent interpretation of these observations which also provides data inaccessible by direct experiments. When the twist is small enough, one screw subnetwork vanishes. The surface strain field induced by such DNs has been used to pilot the lateral ordering of GaAs and InGaAs nanostructures during metal-organic vapor phase epitaxy. We prove that the dimensions and orientations of the nanostructures are correlated with those of the cells of the underlying DN and explain how the interface dislocation structure governs the formation of the nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.