Abstract

We propose a general scheme for constructing models in which the Standard Model (SM) gauge interactions are the mediators of supersymmetry breaking to the fields in the supersymmetric SM, but where the SM gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, the models preserve perturbative unification of the SM gauge coupling constants. Furthermore, the supergravity contributions to the squark and slepton masses can be naturally small, typically being much less than 1% of the gauge-mediated (GM) contributions. Both of these goals can be achieved without need of a fine-tuning or a very small coupling constant. This scheme requires run-away directions at the renormalizable level which are only lifted by non-renormalizable terms in the superpotential. To study the proposed scheme in practice, we develop a modified class of models based on SU(N) × SU(N − 1) which allows us to gauge an SU(N − 2) global symmetry. However, we point out a new problem which can exist in models where the dynamical supersymmetry breaking sector and the ordinary sector are directly coupled - the two-loop renormalization group has contributions which can induce negative (mass)2 for the squarks and sleptons. We clarify the origin of the problem and argue that it is likely to be surmountable. We give a recipe for a successful model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.