Abstract

The Affleck–Dine mechanism is an attractive scenario for generating the observed baryon asymmetry of the universe utilizing flat directions in the scalar potential of supersymmetric theories. In this mini review, we describe this mechanism in its original version, its explicit realization within the minimal supersymmetric standard model and its variants. We discuss the formation of a condensate along the flat directions in the inflationary era, its post-inflationary evolution leading to baryogenesis and its fate. In some cases the condensate may fragment into non-topological solitons, known as Q-balls, during its evolution. In models of gravity-mediated supersymmetry breaking, the Q-balls can be long-lived, in which case their decay will be the source of all baryons and dark matter in the form of the lightest supersymmetric particle. In models of gauge-mediated supersymmetry breaking, the Q-balls can be absolutely stable and form dark matter that can be searched for directly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call