Abstract

GaAs/Ge heterostructures have been employed in various semiconductor devices such as solar cells, high-performance CMOS transistors, and III–V/IV heterogeneous optoelectronic devices. The performance of these devices is directly dependent on the material quality of the GaAs/Ge heterostructure, while the material quality of the epitaxial GaAs layer on the Ge is limited by issues such as the antiphase domain (APD), and stacking-fault pyramids (SFP). We investigate the epitaxial growth of high-quality GaAs on a Ge (001) mesa array, via molecular beam epitaxy. Following a systematic study of the Ge terrace via an in situ scanning tunneling microscope, an atomically step-free terrace on the Ge mesa measuring up to 5 × 5 μm2 is obtained, under optimized growth conditions. The step-free terrace has a single-phase c (4 × 2) surface reconstruction. The deposition of a high-quality GaAs layer with no APD and SFP is then achieved on this step-free Ge terrace. High-resolution transmission electron microscopy and electron channel contrast image characterizations reveal the defect-free growth of the GaAs layer on the step-free Ge mesa. Furthermore, InAs quantum dots on this GaAs/Ge mesa reveal photoluminescent intensity comparable to that achieved on a GaAs substrate, which further confirms the high quality of the GaAs layer on Ge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call