Abstract
Variable angle tow (VAT) laminates have previously shown enhanced buckling performance compared to conventional straight fibre laminates. In this study, an analytical method is developed for the buckling analysis of a novel blade stiffened VAT panel to allow this potential to be more fully exploited. The prebuckling and buckling analysis, performed on a representative section of a blade stiffened VAT panel, are based on a generalised Rayleigh–Ritz procedure. The buckling analysis includes a first order shear deformation theory by introducing additional shape functions for transverse shear and is therefore applicable to structures with thick skins relative to characteristic length. Modelling of the stiffener is achieved with two approaches; idealisation as a beam attached to the skin’s midplane and as a rigidly attached plate. Comparing results with finite element analysis (Abaqus) for selected case studies, local buckling errors for the beam model and plate model were found to be less than 3% and 2% respectively, whilst the beam model error for global buckling was between 3% and 10%. The analytical model provides an accurate alternative to the computationally expensive finite element analysis and is therefore suitable for future work on the design and optimisation of stiffened VAT panels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.