Abstract
Variable angle tow (VAT) laminates that generally exhibit variable stiffness properties not only provide extended design freedom, but also offer beneficial stress distributions. In this paper, the prospect of VAT composite panels with significantly reduced loss of in-plane compressive stiffness in the postbuckled state in comparison with conventional structures, is studied. Specifically, we identify that both thickness and local fiber angle variation are required to effectively define “Buckle-Free” panels under compression loading. In this work, the postbuckling behaviour of variable thickness VAT composite panels is analysed using an efficient and robust semi-analytical approach. Most previous works on the postbuckling of VAT panels assume constant thickness. The additional benefits of tailoring thickness variation in the design of VAT composite panels are seldom studied. However, in the process of manufacturing VAT laminates, either by using the conventional Advanced fiber Placement (AFP) machine (tow overlap) or the newly developed Continuous Tow Shearing (CTS) process (tow shrink) thickness build-up is inevitable. The postbuckling optimization for the design of VAT layups is conducted by a two-level framework using lamination parameters as intermediate design variables. The objective is to determine optimal lamination parameters and thickness distributions for maximizing the axial compressive stiffness of VAT laminates that are loaded in the postbuckling regime. The thickness variation due to both manufacturing of VAT laminates and for where it is independent of manufacturing process are considered. In accordance with the first-level optimal postbuckling solutions in terms of lamination parameters, we investigate a practical “Buckle-Free” VAT panel using a blended layup configuration. This blended VAT panel consists of a piecewise combination of segmental CTS layers and constant-thickness VAT layers. The prospect of taking advantage of a benign combination of stiffness and thickness to improve the overall compressive strength of VAT panels is studied. Finally, the optimal results are analysed to provide insight into the manufacturing of VAT laminates using either the AFP or the CTS process for improved postbuckling stiffness under compression loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.