Abstract
Porewater data from vent sites of the northeastern shelf off Sakhalin Island, Sea of Okhotsk, exhibit bottom-water concentrations down to a sediment depth of up to 300 cm. Below this depth, solute concentrations rapidly change due to methanogenesis and anaerobic methane oxidation (AMO). The profile shapes suggest an irrigation-like process that mixes on a meter scale. At these sites active gas emanation into the overlying water column and near-surface gas hydrates are commonly observed. We propose that methane gas bubbles rise through the soft surface sediments and cause mixing of the porewater. Mathematically, the bubble-induced irrigation can be described by eddy diffusion enhancing the diffusive transport of solutes by several orders of magnitude. A 3-D numerical transport-reaction model was developed to investigate the parameters defining the mixing process, such as bubble rise velocity, tube size, tube distribution in the sediment, and ebullition frequency. Model consistency with the field data requires eddy diffusivities ⩾1 × 10 5 cm 2/a, tube densities of >4 tubes/m 2 (equivalent to a tube spacing of <40 cm), active gas seepage for more than a few weeks or months, and moderate to low diagenetic reaction rates of solutes. The corresponding methane gas fluxes that are predicted from the results of the model realizations range from 1 × 10 3–5 × 10 5 L/(m 2 a). Due to bubble mixing, solute fluxes in these sediments are increased by a factor of 3 and the maximum AMO rate by a factor of 7.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have