Abstract

This paper presents the findings of an experimental study on the effect of temperature gradient on bubble rise velocity in water. At the bottom of the chamber holding water, a bubble (equivalent diameter, req 1 mm) is created and rises through it. At a height of 60 cm from the chamber’s bottom, a high-speed camera (1000 fps, Kodak, Model 1000 HRC) is mounted with a 90 mm Macro lens. It is connected to a computer. For image capture and processing, the commercial tools Sigma Scan Pro 5.0 and Adobe Photoshop are used. The chamber can be heated with infrared light, resulting in a constant temperature gradient of 1.10C/cm between 30 and 40 cm above the needle in the water. Bubble rise characteristics, such as bubble size and rise velocity, are determined both in the presence and absence of a temperature gradient. The current study clearly demonstrates that this gradient causes an additional increase in terminal rise velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.