Abstract

Newly designed mesoporous brushite-metakaolin-based geopolymer materials were examined with an idea for using this material as a potential adsorbent for Pb(II) removal from aqueous solutions. As a starting component for geopolymer synthesis, a natural raw kaolinite clay with the addition of 2 wt.%, 4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.% of pure brushite was used. Phase, structural, morphological, and adsorption properties of newly synthesized mesoporous brushite-metakaolin geopolymer materials were examined in detail by the means of XRPD, FTIR, SEM-EDS, BET/BJH, and ICP-OES methods. The ICP-OES results showed that the synthesized material samples with 2 wt.%, 4 wt.%, and 6 wt.% of brushite possess significant adsorption properties and the mechanisms of the adsorption process can be attributed to chemisorption. The most notable result is that brushite-metakaolin-geopolymer with 2 wt.% of brushite have the best efficiency removal, more than 85% of Pb(II).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call