Abstract

There is a huge scope for the removal of heavy metal ions from aqueous solutions. In this study, mesoporous silica materials, (MSMs), functionalized with (3-Mercaptopropyl) trimethoxysilane, (MPTS/MSMs), were prepared and used for adsorption of Pb(II) ions from aqueous solutions. The synthesis of MPTS/MSMs adsorbent was done using one-pot hydrothermal method by immobilizing 3-Mercaptopropyl trimethoxysilane onto mesoporous silica surface. The structure and properties of the adsorbent were explored using different techniques such as FT-IR, XRD, SEM, TEM, TGA, and N2 adsorption-desorption isotherms. The adsorption applicability of prepared nanostructure for removal of the Pb(II) ions from the aqueous solution was investigated and the results showed a good selectivity in the absorption of Pb(II) ions over other ions in aqueous solution. The effect of different parameters including the solution pH, Pb(II) concentration, sorbent amount, ion interfering effect, and the contact time onto the removal efficiency of the adsorbent was investigated systematically. The maximum adsorption efficiency (~ 97%) was found for the solutions with pH = 6, the best contact time was seen as 30 min for 50 mg L−1 of the analyte under the optimal conditions. The adsorbent was triumphantly used for the removal of Pb (II) ions from the three real water samples, including tap water, well water, and lake water with the removal efficiency of > 95%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.