Abstract

Abstract The breakup of temperature inversions in the deep mountain valleys of western Colorado has been studied by means of tethered balloon observations of wind and temperature structure on clear weather days in different seasons. Vertical potential temperature structure profiles evolve following one of three patterns. Two of the patterns are special cases of the third pattern, in which inversions are destroyed by two continuous processes-upward growth of a convective boundary layer (CBL) into the base of the valley inversion, and descent of the inversion top. The three idealized patterns are described and 21 case studies of inversion breakup following the patterns are summarized. Inversion breakup begins at sunrise and is generally completed in 3½–5 h, unless the valley is snow covered or the ground is wet. Warming of the inversion layer is consistent with subsidence heating. An hypothesis is offered to explain the observations, stressing the role of the sensible heat flux in causing the CBL to grow an...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.