Abstract
Abstract The electrical load from irrigation pumps is an important part of the overall electricity demand in many agricultural areas of the U.S. west. The date the pumps turn on and the total electrical load they present over the summer varies from year to year, partly because of climate fluctuations. Predicting this variability would be useful to electricity producers that supply the region. This work presents a contingency analysis and linear regression scheme for forecasting summertime irrigation pump loads in southeastern Idaho. The basis of the predictability is the persistence of spring soil moisture conditions into summer, and the effect it has on summer temperatures. There is a strong contemporaneous relationship between soil moisture and temperature in the summer and total summer pump electrical loads so that a reasonable prediction of summer pump electrical loads based on spring soil moisture conditions can be obtained in the region. If one assumes that decision makers will take appropriate actions based on the forecast output, the net economic benefit of forecast information is approximately $2.5 million per year, making this prediction problem an important seasonal summer forecasting issue with significant economic implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.