Abstract

Size dependent hole dynamics are measured in colloidal CdSe quantum dots for a specific state-to-state excitonic transition. These experiments show that the hole energy loss rate increases for smaller quantum dots, contradicting known relaxation mechanisms for holes. These experiments reveal a new mechanism for hole relaxation in colloidal quantum dots which circumvents the expected phonon bottleneck for holes. The data are consistent with a nonadiabatic surface channel as the dominant pathway for hole relaxation in colloidal semiconductor quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.