Abstract

Novel optoelectronic systems based on ensembles of semiconductor nanocrystals are addressed in this paper. Colloidal semiconductor quantum dots and related quantum-wire structures have been characterized optically; these optical measurements include those made on self-assembled monolayers of DNA molecules terminated on one end with a common substrate and on the other end with TiO<sub>2</sub> quantum dots. The electronic properties of these structures are modeled and compared with experiment. The characterization and application of ensembles of colloidal quantum dots with molecular interconnects are considered. The chemically-directed assembly of ensembles of colloidal quantum dots with biomolecular interconnects is demonstrated with quantum dot densities in excess of 10<sup>+17</sup> cm<sup>-3</sup>. A number of novel photodetectors have been designed based on the combined use of double-barrier quantum-well injectors, colloidal quantum dots, and conductive polymers. Optoelectronic devices including photodetectors and solar cells based on threedimensional ensembles of quantum dots are considered along with underlying phenomena such as miniband formation and the robustness of minibands to displacements of quantum dots in the ensemble.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.