Abstract

Time zero and time dependent dielectric breakdown (TZBD and TDDB) characteristics of atomic layer deposited (ALD) TiN/HfO 2 high-κ gate stacks are studied by applying ramped and constant voltage stress (RVS and CVS), respectively, on the n-channel MOS devices under inversion conditions. For the gate stacks with thin high-κ layers (⩽3.3 nm), breakdown (BD) voltage during RVS is controlled by the critical electric field in the interfacial layer (IL), while in the case of thicker high-κ stacks, BD voltage is defined by the critical field in the high-κ layer. Under low gate bias CVS, one can observe different regimes of the gate leakage time evolution starting with the gate leakage current reduction due to electron trapping in the bulk of the dielectric to soft BD and eventually hard BD. The duration of each regime, however, depends on the IL and high-κ layer thicknesses. The observed strong correlation between the stress-induced leakage current (SILC) and frequency-dependent charge pumping (CP) measurements for the gate stacks with various high-κ thicknesses indicates that the degradation of the IL triggers the breakdown of the entire gate stack. Weibull plots of time-to-breakdown ( T BD) suggest that the quality of the IL strongly affects the TDDB characteristics of the Hf-based high-κ gate stacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.