Abstract
A unified engine torque actuator for heavy-duty vehicles is developed in this paper. Based on averaging and identification of the instantaneous torque response for changes in brake valve timing and fuel flow, we derive a control oriented engine model of a six cylinder, 350 Hp turbocharged diesel engine, equipped with a compression brake. This work bridges the gap between the detailed compression crank angle based models developed in the engine design community, and the first order lag representation of diesel engine torque response used in the vehicle dynamics community. Moreover, we integrate the compression brake actuator with the service brakes and design a PI-controller that emulates the driver's actions during long descends on grades. The controller simply uses the engine speed measurement to activate the service brakes only when needed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have