Abstract
In stochastic exploration of geometrically embedded graphs, intuition suggests that providing a shortcut between a pair of nodes reduces the mean first passage time of the entire graph. Counterintuitively, we find a Braess's paradox analog. For regular diffusion, shortcuts can worsen the overall search efficiency of the network, although they bridge topologically distant nodes. We propose an optimization scheme under which each edge adapts its conductivity to minimize the graph's search time. The optimization reveals a relationship between the structure and diffusion exponent and a crossover from dense to sparse graphs as the exponent increases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have