Abstract

Abstract Bowing, propagating precipitation features that sometimes appear in NCEP's North American Mesoscale model (NAM; formerly called the Eta Model) forecasts are examined. These features are shown to be associated with an unusual convective heating profile generated by the Betts–Miller–Janjić convective parameterization in certain environments. A key component of this profile is a deep layer of cooling in the lower to middle troposphere. This strong cooling tendency induces circulations that favor expansion of parameterized convective activity into nearby grid columns, which can lead to growing, self-perpetuating mesoscale systems under certain conditions. The propagation characteristics of these systems are examined and three contributing mechanisms of propagation are identified. These include a mesoscale downdraft induced by the deep lower-to-middle tropospheric cooling, a convectively induced buoyancy bore, and a boundary layer cold pool that is indirectly produced by the convective scheme in this environment. Each of these mechanisms destabilizes the adjacent atmosphere and decreases convective inhibition in nearby grid columns, promoting new convective development, expansion, and propagation of the larger system. These systems appear to show a poor correspondence with observations of bow echoes on time and space scales that are relevant for regional weather prediction, but they may provide important clues about the propagation mechanisms of real convective systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.