Abstract
We study boundary value problems for harmonic functions on certain domains in the level-$l$ Sierpinski gaskets $\mathcal{SG}_l$($l\geq 2$) whose boundaries are Cantor sets. We give explicit analogues of the Poisson integral formula to recover harmonic functions from their boundary values. Three types of domains, the left half domain of $\mathcal{SG}_l$ and the upper and lower domains generated by horizontal cuts of $\mathcal{SG}_l$ are considered at present. We characterize harmonic functions of finite energy and obtain their energy estimates in terms of their boundary values. This paper settles several open problems raised in previous work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.