Abstract
In this paper, we mainly study the Rm (m>0) Riemann boundary value problems for functions with values in a Clifford algebra Cl(V3, 3). We prove a generalized Liouville-type theorem for harmonic functions and biharmonic functions by combining the growth behaviour estimates with the series expansions for k-monogenic functions. We obtain the result under only one growth condition at infinity by using the integral representation formulas for harmonic functions and biharmonic functions. By using the Plemelj formula and the integral representation formulas, a more generalized Liouville theorem for harmonic functions and biharmonic functions are presented. Combining the Plemelj formula and the integral representation formulas with the above generalized Liouville theorem, we prove that the Rm (m>0) Riemann boundary value problems for monogenic functions, harmonic functions and biharmonic functions are solvable. Explicit representation formulas of the solutions are given. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.