Abstract

The present study was motivated by two questions. First, what are the characteristics of grain and phase boundaries in a nanostructured material containing multiple phases? Second, what is the influence of these interfaces on mechanical behavior? Accordingly, a three-constituent Al 5083/B4C ultrafine grain (UFG) composite, consisting of a coarse grain (CG) phase (1–2μm), an UFG phase (100–200nm) and B4C particles (∼0.7μm), was selected for study. Interest in this particular Al 5083/B4C system stems from its hierarchical architecture, which comprises multiple scales, as well as from a reported yield strength of 1145MPa. The associated grain boundaries (GB) and interfaces were investigated by transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy methods. The role of high/low-angle GB, equilibrium and non-equilibrium GB within and between the CG and UFG regions, twin boundaries, twist transition boundaries and impurity segregation at GB in strengthening mechanisms is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.