Abstract

Ni-Mn-Ti shape memory alloys show great potential in solid-state elastocaloric cooling owing to very prominent elastocaloric effect along with first-order stress-induced martensitic transformation. However, large stress hysteresis inherent to martensitic transformation greatly restricts the energy efficiency and cyclic stability of elastocaloric response. Here, we demonstrate the effective manipulation of stress hysteresis as well as the resulting elastocaloric effect through doping boron to Ni-Mn-Ti alloys. With the incremental boron content in (Ni50Mn31Ti19)100–xBx (x = 0, 0.2, 0.5, 1, 1.5) alloys, a plateau-type superelastic behavior with large stress hysteresis gradually evolves into a quasi-linear one with slim hysteresis, giving rise to significant improvement in the energy conversion efficiency of elastocaloric response. In a (Ni50Mn31Ti19)99B1 alloy, the coefficient of performance of material (COPmat) can be as high as 24 ∼ 33. Moreover, under a compressive strain of 4%, large cooling |ΔTad| values higher than 6.5 K in the (Ni50Mn31Ti19)99B1 alloy are maintained for over 8000 superelastic cycles, showing an enhancement of one order of magnitude in the cyclability with respect to that of boron-free Ni50Mn31Ti19 alloy. We attribute the enhanced elasocaloric response to the significantly improved mechanical properties but reduced stress hysteresis endowed by relatively high content of boron doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.