Abstract

Antiaromatic cyclobutadiene (c-C4H4) is the simplest prototype of [n]annulenes and a key reactive intermediate with significant ring strain, serving as the model compound for antiaromatic systems in organic chemistry. Here, we report the first bottom-up formation of cyclobutadiene in low-temperature acetylene (C2H2) ices exposed to energetic electrons. Cyclobutadiene was isolated and detected in the gas phase upon sublimation utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry along with ultraviolet photolysis studies. These findings advance our fundamental understanding of the exotic chemistry and preparation of highly strained antiaromatic cycles through non-equilibrium chemistry in interstellar environments, thus affording a possible route for the formation of highly strained molecules such as the hitherto elusive tetrahedrane (C4H4). Because acetylene is a major product of the photolysis and radiolysis of methane (CH4) ice, an abundant component of interstellar ices, our results suggest that cyclobutadiene can likely be formed in methane-rich ices of cold molecular clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.