Abstract

Nitriles are one of the most common classes of molecules observed in the gas phase in space, with over a dozen having been positively identified in interstellar and circumstellar environments through the detection of their rotational transitions. Acids, in contrast, are much less common. In this paper we present laboratory data comparing the stability of two structurally related acid-nitrile pairs to ultraviolet (UV) photolytic destruction: acetic acid vs. acetonitrile (CH3-COOH vs. CH3-CN) and glycine vs. aminoacetonitrile (H2N-CH2-COOH vs. H2N-CH2-CN). We find that the nitriles are destroyed ten and five times more slowly (respectively) by UV photolysis than are the corresponding acids. This suggests that whatever their relative formation rates, acids may be less abundant than nitriles in interstellar environments in part because they are more rapidly destroyed by photolysis. The results of this infrared (IR) spectral matrix isolation study indicate that during the lifetime of a typical interstellar cloud, even in its darkest regions, a population of acids in the gas phase will likely be diminished by at least half. Since aminoacetonitrile is a precursor to the amino acid glycine, and far more stable, presolar aminoacetonitrile may be a contributor to the deuterium enriched glycine detected in meteorites. It would clearly be informative to search for aminoacetonitrile (the nitrile corresponding to glycine) in the regions where the amino acid glycine has been reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.