Abstract
Methylmercury (CH3Hg+, MMHg) in the phytoplankton and zooplankton, which form the bottom of marine food webs, is a good predictor of MMHg in top predators, including humans. Therefore, evaluating the potential exposure of MMHg to higher trophic levels (TLs) requires a better understanding of relationships between MMHg biomagnification and plankton dynamics. In this study, a coupled ecological/physical model with 366 plankton types of different sizes, biogeochemical functions, and temperature tolerance is used to simulate the relationships between MMHg biomagnification and the ecosystem structure. The study shows that the MMHg biomagnification becomes more significant with increasing TLs. Trophic magnification factors (TMFs) in the lowest two TLs show the opposite spatial pattern to TMFs in higher TLs. The low TMFs are usually associated with a short food-chain length. The less bottom-heavy trophic pyramids in the oligotrophic oceans enhance the MMHg trophic transfer. The global average TMF is increased from 2.3 to 2.8 in the warmer future with a medium climate sensitivity of 2.5 °C. Our study suggests that if there are no mitigation measures for Hg emission, MMHg in the high-trophic-level plankton is increased more dramatically in the warming future, indicating greater MMHg exposure for top predators such as humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.