Abstract
Recent reviews by researchers from academia, industry, and government have revealed that the criteria used by the Stockholm Convention on persistent organic pollutants under the United Nations Environment Programme are not always able to identify the actual bioaccumulative capacity of some substances, by use of chemical properties such as the octanol-water partitioning coefficient. Trophic magnification factors (TMFs) were suggested as a more reliable tool for bioaccumulation assessment of chemicals that have been in commerce long enough to be quantitatively measured in environmental samples. TMFs are increasingly used to quantify biomagnification and represent the average diet-to-consumer transfer of a chemical through food webs. They differ from biomagnification factors, which apply to individual species and can be highly variable between predator-prey combinations. The TMF is calculated from the slope of a regression between the chemical concentration and trophic level of organisms in the food web. The trophic level can be determined from stable N isotope ratios (δ(15) N). In this article, we give the background for the development of TMFs, identify and discuss impacts of ecosystem and ecological variables on their values, and discuss challenges and uncertainties associated with contaminant measurements and the use of δ(15) N for trophic level estimations. Recommendations are provided for experimental design, data treatment, and statistical analyses, including advice for users on reporting and interpreting TMF data. Interspecies intrinsic ecological and organismal properties such as thermoregulation, reproductive status, migration, and age, particularly among species at higher trophic levels with high contaminant concentrations, can influence the TMF (i.e., regression slope). Following recommendations herein for study design, empirical TMFs are likely to be useful for understanding the food web biomagnification potential of chemicals, where the target is to definitively identify if chemicals biomagnify (i.e., TMF > or < 1). TMFs may be less useful in species- and site-specific risk assessments, where the goal is to predict absolute contaminant concentrations in organisms in relation to threshold levels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Integrated Environmental Assessment and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.