Abstract
Rates of ethanol clearance were measured at rest and with acute exercise in four groups of female Sprague-Dawley rats. Two groups were trained to run on a motor-driven rodent treadmill at 27 m/min, 1 h/day, 5 days/wk and were given a nutritionally balanced liquid diet; one of these groups received 35% calories as ethanol whereas in the other, sucrose was isocalorically substituted for the ethanol. Appropriate sedentary and nonethanol controls were also used. Clearance of a 1.75-g/kg ethanol dose injected intraperitoneally was determined by measuring ethanol levels in the blood each hour and utilizing these values in the Widmark equation (R. Teschke, F. Moreno, and A. Petrides, Biochem. Pharmacol. 30: 1745-1751, 1981) for calculating whole-body ethanol clearance. Rates of ethanol clearance were determined for each rat at 4 and 7 wk of training. The clearance tests at 4 wk included a 60-min period of running exercise, whereas the tests 3 wk later were conducted at rest. The results indicate that both acute exercise and exercise training can increase rates of in vivo ethanol clearance. In addition, the chronic exercise appeared to increase in vitro ethanol metabolism by hepatic microsomes without altering in vitro hepatic alcohol dehydrogenase activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have