Abstract

We propose a way to increase the lifetime of two-dimensional direct excitons and show the possibility to observe their macroscopically coherent state at temperatures much higher than that of indirect exciton condensation. For a single GaAs quantum well embedded in photonic layered heterostructures with subwavelength period, we predict the exciton radiative decay to be strongly suppressed. Quantum hydrodynamics joined with the Bogoliubov approach are used to study the Berezinskii-Kosterlitz-Thouless crossover in a finite exciton system with intermediate densities. Below the estimated critical temperatures, drastic growth of the correlation length is shown to be accompanied by a manyfold increase of the photoluminescence intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.