Abstract

Boron is present in the form of boric acid (B(OH)3 or H3BO3) in seawater, geothermal waters, and some industrial wastewaters but is toxic at elevated concentrations to both plants and humans. Effective removal of boron from solutions at circumneutral pH by existing technologies such as reverse osmosis is constrained by high energy consumption and low removal efficiency. In this work, we present an asymmetric, membrane-containing flow-by electrosorption system for boron removal. Upon charging, the catholyte pH rapidly increases to above ∼10.7 as a result of water electrolysis and other Faradaic reactions with resultant deprotonation of boric acid to form B(OH)4- and subsequent removal from solution by electrosorption to the anode. Results also show that the asymmetric flow-by electrosorption system is capable of treating feed streams with high concentrations of boron and RO permeate containing multiple competing ionic species. On the basis of the experimental results obtained, a mathematical model has been developed that adequately describes the kinetics and mechanism of boron removal by the asymmetric electrosorption system. Overall, this study not only provides new insights into boron removal mechanisms by electrosorption but also opens up a new pathway to eliminate amphoteric pollutants from contaminated source waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.