Abstract
The large-scale application of aqueous Al-air batteries is highly restricted by the performance of Al anodes. The severe self-corrosion and hydrogen evolution of the Al anode in a concentrated alkaline electrolyte are the main reason. Here, aimed at relieving side reactions and enhancing the utilization of metal Al, we propose a hybrid electrolyte additive of 2-mercaptobenzothiazole (MBT) and ZnO to form a protective film at the anode/electrolyte interface and to decrease the hydrogen evolution active site. The strong absorption capability of MBT on the metal surface, along with the reduced Zn-containing layer, enables a compact protective film with high hydrogen evolution potential on the Al surface. With this benefit, the hydrogen evolution reaction (HER) inhibition efficiency is up to 83.58%, endowing a superior Al-air battery with an energy density of 2376.71 Wh kgAl-1 under a current density of 25 mA cm-2. The conception of constructing a hybrid protective film on the metal surface not only favors the development of metal-air batteries but also facilitates metal corrosion protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.