Abstract
Aluminum-air batteries offer unique advantages over other aqueous batteries in terms of environmental friendliness, energy density, resource abundance, and cost-effectiveness. Nevertheless, the parasitic hydrogen evolution reaction (HER) of anode presents severe challenges for stable and long-term operation of batteries. Here we found that the mixed solution with strong H-bond network has a significant inhibitory effect on the self-discharge and HER of Al anode in alkaline electrolyte. And establishing the relationship between the molecular structure of the cosolvent (carbon chain lengths and hydrogen bond acceptors) and the strength of the hydrogen bonding network of the electrolyte. The as-constructed Al-air battery with ethylene glycol (EG) cosolvent demonstrates a remarkable increased discharge specific capacity of 2725 mAh g-1, corresponding to the Al anode utilization of 91.4%. The operation time also extends to 160 hours at 5 mA cm-2. This work provides new avenues to understand the role of H2O in aqueous electrolytes and explore low-cost and effective approaches for the development of next-generation aqueous Al-air batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.